Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Food webs govern interactions among organisms and drive energy fluxes within ecosystems. With an increasing appreciation for the role of symbiotic microbes in host metabolism and development, it is imperative to understand the extent to which microbes conform to, and potentially influence, canonical food web efficiencies and structures. Here, we investigate whether bacteria and their taxa and functional genes are compositionally nested within a simple model food web hierarchy, and the extent to which this is predicted by the trophic position of the host. Using shotgun and amplicon sequencing of discrete food web compartments within replicate tank bromeliads, we find that both taxonomy and function are compositionally nested and largely mirror the pyramid-shaped distribution of food webs. Further, nearly the entirety of bacterial taxa and functional genes associated with hosts are contained within host-independent environmental samples. Community composition of bacterial taxa did not significantly correlate with that of functional genes, indicating a high likelihood of functional redundancy. Whereas bacterial taxa were shaped by both location and trophic position of their host, functional genes were not spatially structured. Our work illustrates the advantages of applying food web ecology to predict patterns of overlapping microbiome composition among unrelated hosts and distinct habitats. Because bacterial symbionts are critical components of host metabolic potential, this result raises important questions about whether bacterial consortia are shaped by the same energetic constraints as hosts, and whether they play an active role in food web efficiency.more » « less
-
Abstract PremiseThe ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant–fungal interactions, especially under environmental stress. MethodsWe tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high). Inoculated and uninoculated plants were grown in controlled conditions for 151 days, then shoot and root biomass were weighed and fungal diversity and community composition determined via amplicon sequencing. ResultsThe source of inoculum and water regime elicited significant changes in plant resource allocation to shoots versus roots, but only specific inocula affected total plant biomass. Shoot biomass increased in the high water treatment but was negatively impacted by all inoculum treatments relative to the controls. The opposite was true for roots, where the low water treatment led to greater proportional root biomass, and plants inoculated with wet site fungi allocated significantly more resources to root growth than dry‐ or moderate‐site inoculated plants and the controls. Fungal communities of shoots and roots partitioned by inoculum source, water treatment, and the interaction of the two. ConclusionsThe provenance of fungi can significantly affect total plant biomass and resource allocation above‐ and belowground, with fungi derived from more extreme environments eliciting the strongest plant responses.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts’ microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.more » « less
An official website of the United States government
